Forced-air Evaporative Cooling for Postharvest Fruit and Vegetable Storage

Refrigerated Cold Rooms

- Farmers have a need for improved postharvest fruit and vegetable storage
 - Food spoilage, lower prices at market, time spent transporting produce
- Areas for improvement for refrigerated cold rooms:
 - Cost of construction
 - Energy consumption
 - Low humidity

Active evaporative cooling "Swamp coolers"

Forced-Air Evaporative Cooling Chamber

Concept:

designing for a more equitable world

- A used shipping container can be the primary structure
- "Swamp cooler" blows cool air directly through crates
- Rapid cooling of produce
- High humidity environment

Pilot chambers in Kenya and India

Chambers with a storage capacity of 168 crates

- Kenya: Solar-powered off-grid system located at a produce market between Nairobi and Mombasa, cost \$15,000 to construct (Solar Freeze)
- India: On-grid system located at a produce market near Bhuj, cost \$8,100 to construct (Hunnarshala Foundation)

• An off-grid refrigerated cold room with a similar storage capacity costs between \$30,000 and \$50,000 to construct

Pilot chambers in Kenya and India

- 6" thick packaged evaporative cooling pads
- 50 mm thick insulation panels
- Galvanized iron support structures
- IoT-connected control system
- 2-tank irrigation system
- 6 separate compartments for crates
- Door system design to minimize air gaps

Pilot chambers in Kenya and India

- 6" thick packaged evaporative cooling pads
- 50 mm thick insulation panels
- Galvanized iron support structures
- IoT-connected control system
- 2-tank irrigation system
- 6 separate compartments for crates
- Door system design to minimize air gaps

Comparison with Refrigerated Cold Rooms

• Energy consumption and cost

- Forced-air evaporative cooling uses ~ 1/4 the energy of mechanical refrigeration
- The forced-air evaporative cooling chamber costs less than half of the typical refrigerated cold room
- Cooling rate
 - Forced-air cooling allows for significantly faster cooling rates than room cooling
- Temperature control and minimum temperature
 - The minimum temperature that can be achieved through direct evaporative cooling is limited by the wet-bulb temperature, which is dependent on the ambient air temperature and humidity
- Humidity
 - Evaporative cooling provides a high humidity environment
 - Refrigerated cold rooms typically provide a low humidity environment
- Chamber optimized for inventory management and crop separation

Results from Chamber in India

Percent of produce spoiled after 2 days (chamber operating at 50% capacity factor)

Vegetable	Control	Chamber	Improvement
Alfalfa	50%	17%	33%
Coriander	70%	20%	50%
Cucumber	30%	15%	15%
Cabbage	15%	2%	13%
Cauliflower	18%	2%	16%
Eggplant	38%	12%	26%
Tomatoes	50%	10%	40%
Chili pepper	17%	5%	22%
Ladyfingers	20%	1%	19%
Ridge gourd	30%	8%	22%
Papaya	24%	8%	16%
Spinach	60%	20%	40%

Average temperature

- Ambient dry-bulb: 33°C
- In the chamber: 26°C

Average relative humidity

- Ambient: 45%
- In the chamber: 87%

Results from Chamber in Kenya

- Average ambient dry-bulb temperature: 22.6°C
- Maximum ambient dry-bulb temperature: 33.4°C
- Average ambient relative humidity: 56%

designing for a more equitable world

- Average ambient wet-bulb temperature: 16.4°C
- Average dry-bulb temperature in the chamber: 17.5°C
- Maximum dry-bulb temperature in the chamber: 21.1°C
- Average humidity inside the chamber: 91%
- Average evaporative cooling efficiency: 82%

Potential Markets

Geography

- Broad Regional Markets:
 - Sub-Saharan Africa
 - India

designing for a more equitable world

Middle East and North Africa

Application

- Fixed location:
 - Farming cooperatives
 - Produce markets
 - Large producers
- Mobile / seasonal:
 - Moving the container to where the need is greatest
- Pre-cooling:
 - Rapid cooling at the farm gate
- Transportation:
 - Transport from the farm gate to central location

Open-Source Designs

The MIT team published documents covering each of these topics:

- 1. Introduction
- 2. Dimensional Design Schematics
- 3. Airflow System Diagrams
- 4. Electrical System Diagrams
- 5. Plumbing System Diagrams
- 6. Construction Guidelines

- Video overviews for each section of the documentation
- A dedicated website for hosting the documentation

https://www.cooling-chamber.mit.edu/

Next Steps for Forced-Air Evaporative Cooling Chamber

- Test and optimize system performance (ongoing)
 - Pilot chambers in India and Kenya
 - Test chambers at MIT
- Pilot chambers with users in Kenya and India (ongoing)
 - Deployed with farmers and vendors and currently gathering data
- Identify additional partners to replicate the design
 - Cold storage providers
 - Other horticulture value chain stakeholders

Contact: Eric Verploegen <u>ericv@mit.edu</u>

Leon Glicksman glicks@mit.edu

https://www.cooling-chamber.mit.edu/

